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also for a compressible fluid. 
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WAVE IN A BOUNDARY LAYER, 

The development of three-dimensional perturbations of constant frequency 
in a boundary layer on a semi-infinite plate is studied within the frame- 
work of the Navier-Stokes (NS) equations for an incompressible fluid. A 
case in which the Tollmin-Schlichting (TS) /l, 2/ wave has reached a 
point on the plate corresponding to the lower branch of the neutral 
stability curve (NSC), obtained by solving the eigenvalue problem for the 
Orr-Sommerfeld equation, is discussed. An asymptotic solution of the non- 
linear NS equations at large Reynolds numbers in given. According to the 
result obtained, first we have a non-linear process taking place within 
the NSC near its lower branch, for the separated TS wave with an amptitude 
that is not too small, leading to gradual reduction in the wave amplitude. 
Since the Blasius boundary layer is not parallel, the process changes 
when the amplitude increases. Thus the point at which the amplitude of 
the TS wave is at a minimum, lies within the loop of the NSC. Therefore, 
when the experiment is compared with the linear theory based on the Orr- 
Sommerfeld equation, the theory must be corrected. 

Non-linear effects in the theory of the TS waves were first studied in /3/, where an 
equation for the wave amplitude was given. A strict proof of the amplitude equation was 
obtained later in /4/ for the case of perturbations periodic in the longitudinal direction 
of the coordinate. The effect of non-parallelism of the flow on the coefficients of this 
equation was studied in /5/. The amplitude equation was analysed, without taking into account 
*Prikl.Matem.Mekhan.,51,3,410-416,1987 
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the non-parallel character, in /6/ for the case when the time-dependent frequency of the TS 
wave did not change, and the change in the amplitude was connected with the motion of the TS 
wave along the stream. The asymptotic solutions of the complete NS equations were discussed 
in /7/ for the case when the effects of non-parallelism and non-linearity were both taken 
into account simultaneously. 

The present paper deals with the process of development of the wave when non-linear 
effects predominate at the initial stage of the process. It is found that the development 
of the perturbations of the type indicated is described, in the subsequent stage of its 
evolution, by the asymptotic equations of /7/, and this is proved using the method of matching 
the asymptotic expansions. In the limit, when the perturbation amplitude is such that the 
scale of the non-linear and non-parallel development is the same, the results of /7/ are 
obtained. 

1. Formulation of the problem. Let us consider two-dimensional flow past a finite 
plate parallel to the uniform incoming flow. We introduce a Cartesian coordinate system with 
origin at the leading edge and abscissa axis directed along the plate. The subsequent in- 
vestigation will be carried out at a distance of the order of &+ and such that E = R-‘l* is a 
small parameter where R = U&,/V,. An asterisk denotes dimensional quantities: v* is the 
coefficient of kinematic viscosity and U, is the velocity of the incoming flow. We assume 
that a TS wave is formed on approaching the point L*, whose amplitude within the main body 
of the boundary layer formed is of the order of EB (for the longitudinal velocity u*), where 

s-=G 1, and at the point L, the increment of the wave growth in the coordinate s* will vanish 
in accordance with the linear theory. The structure of the TS wave in the linear formulation 
was studied in /B-10/. Below we shall consider the change in the oscillation amplitude of the 
wave within the loop of the NSC near its lower branch, taking into account the effects of the 
non-linearity and non-parallelism. 

According to the linear theory /9/ the amplitude of the TS wave will not change at 
distances of the order of the corresponding wave length, i.e. at distances 2r G (f* - fi*) 
L,-r&-" = o(i). However, it is necessary, because of the non-linearity, to supplement the 
term of order ~8 (the TS wave) in the expansion for u,with terms of the order & with 
second and zeroth harmonics and of the order ~8" with third and first harmonics relative 
to the first harmonic of the initial wave. The higher-order terms are obtained from the 
projection of the NS equation on the J* axis. The latter terms, appearing in the same 
harmonic as the initial wave, will begin to influence the change in the amplitude, and this 
can be described by assuming thatthewave amplitudebegins to depend on the variable X :L x,8'. 
At the same time, effects connected with the change in amplitude of the TS wave (in the 
projection of the NS equations on the X * axis) will be of the same order as the non-linear 
effects shown above. 

The influence of the non-parallelism already becomes essential for the development of a 
wave of small amplitude, in the neighbourhood of the point L,, i.e. when z= (x* - L,)IL,<1. 
According to the selfsimilar Blasius solution describing a flow in a developed boundary layer, 
the longitudinal velocity profile changes during the displacement by sj+, by the order of 
r. In this connection, terms of the order of 6x18 (with the same harmonic as the initial 
wave) appear in the projection of the NS equations on the X Ip axis, together with terms of the 
order of Pie, obtained because of the non-linearity, and controlling the change in the 
amplitude of the initial wave, and this is caused by the deformation of the Blasius profile. 
Then the condition that at the initial stages of the development of the wave it is the effects 
of non-linearity and non-parallelism that are important, means that x<6'. Expressing x in 
terms of the variable X = O(1) (on the scale of the non-linearity), we obtain the constraints 
1 > 6 > EJ/l which will be assumed hold in what follows. 

Let the amplitude of the TS wave at the point z be a quantity oftheorder of sSO, where 
6, depends on r (6, (X = 0 (1)) = 6). A "weak" non-linearity of the flow near the point X will 
manifest itself, as was explained above, inthefact that the perturbation amplitude will be a 
function, of the order of unity, of the variable Z =x6,'/@'. As the wave moves, the effects 
of the non-parallelism become stronger and attain the same order as those of the non-linearity 
when the wave reaches x such as z = 0(&,2) on the scale .Z = 0 (1). Then we can easily obtain 
6, = 0 (&'/*), z m= 0 (E”:‘) and the corresponding "slow" variable Z = ~,fs"j~. We show in this paper 
that two layers can be introduced when r>O: the first layer will have a size of the order 
of ??/S" , i.e. X = O(1), where the non-linear processes are important, and the second layer 
will be of the order of a"/*, i.e. 2=0(l) where the effects of the non-parallelism and 
non-linearity are of the same order and asymptotic matching exists between them. 

The problem for the NS equations is formulated as follows. To construct an asymptotic 
solution in the layer X = O{(1), X >0 and a solution in the layer Z = O(i), satisfying the 
conditions of adhesion at y, = 0 and of decay of the perturbations when y,iL, + m, such that 
they match asymptotically as X + w,Z+O and yield a TS wave as X+0, with amplitude of 
the order of EE) in the basic thickness of the boundary layer. 
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2. Description of the flow in the viscous boundary layer. Let us separate the 
plane of flow, as usual /8/, into three regions: the lower region where the viscosity is 
essential for the perturbations constructed, the middle region which coincides with the main 
body of the boundary layer , and the upper region of potential flow of which the increase in 
the ordinate is accompanied by a final exponential decay of the perturbations. 

Applying the technique of multiscale expansions, we introduce into each region its own 
variable in y,,andthe same variables in t * and x,,namelythe "rapid" variables t, = t,U,L,-‘e-‘, 
x1 and the "slow" variables X, Z. 

In order to describe the flow in the boundary region,weintroduceavariable y = y,L,-le-b 
which will be of the order of unity. We seek the expansions in this region at X = O(1) for 
u*, for the pressure p* and for transverse velocity v* in the form 

The quantity h, = 0.3321 in (2.1) is the derivative of the longitudinal velocity of the 
Blasius solution for the selfsimilar variable calculated at the plate, p*' is the unperturbed 
pressure, p* is the density of the incoming flow and A is a quantity of the order of O(E)-+ 
0 (6s). We seek the functions u3,vs in the layer X = O(1) in the form 

-2v,/o, = if,C,E + 2i6f,C,E’ + h2 (3if.J,E3 i iQ,,E) + c-c. (2.2) 
2u, = f,‘C,E + 6 (fJ,+ f,‘C,P) + 62 (f3’C,E3 + @,‘E - f,‘dCJ 
/dX.E/i oO)$ C.C. 

f, = f, (y), @I = @‘1 (5, y), C, = C, (X) = (Cl (X))“, CLl = 

I Cl I 2 
E = exp (io,z, + io,t,) 

Here C,is an unknown complex function (the amplitude of the TS wave), a0 and o1 are 
unknown real numbers, the symbol C.C. denotes the complex conjugate and a prime denotes 
differentiation with respect to y. The equation of continuity holds identicallyforexpressions 
(2.2). 

Substituting the expansions (2.1), (2.2) into the NS equationsandcollectingthequantities 
accompanying terms of the same order of smallness and harmonics, we obtain the following 
systems of equations for determining the functions f,, C,, Dl, with the boundary conditions of 
adhesion at y = 0 and boundedness as y-t 00: 

4 (f1) = 0, ro (II) = 0; L (A) = li,i%<fl”fl’> 
ro (f,) = 0; fOV' = -l/,w,Im(f,"f,'>, f. (0) = 0 

L, (ml) = h,yf”,dC,idX + C, I C, I * @<f,“?; -t fl”fo + 

‘i,ft”‘fL ro PI) = 0 

(2.3) 

(2.4) 

Here 

L, (Q) zz W” - in (6&y + wl) w 
r. @) 5 I m (0) 1 + 1 a,’ (0) 1 + 1 w (00) 1, <(D(“W”)> = 

@,c")yc") - @P-vyP+2) 

The numbersnand m in the last formula denote the order of the derivatives, and a bar 
denotes the complex conjugate. 

We seek the solution in the layer Z = 0 (1) also in the form (2.1), (2.2), but we must 
replace h, in (2.1) by &(I -1/,~), and 6 and X in all formulas by a'fa and z respectively. 
Systems (2.3) are rewritten without any changes , and for system (2.4) we have 

L, ((P) = h,yfr"K,idZ + i 00 C, I C, I Yfz"fl + fl"fo t (2.5) 
1/zf2 

I, I 
f1> - li,~~,~%fl”YCl, ro (@I) = 0 

In the layer Z = O(1) the terms of the order O(E) appearing in A, and correcting the 
solution of the Orr-Sommerfeld equation, does not affect the calculation of the amplitude 

c, (4 of the TS wave /7/, and is given e.g. in /ll/. 

3. Description of the potential flow. In order to describe a flow in the potential 
region in the layer X = O(l), we introduce the variable y,= y,&-'L,-', which is of the order 
of unity. We seek the expansion within this region in the form 

U.--u, 
U&s8 =+ + A, &=v,+A, +&$-=pl+A (3.1) 
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We seek the functions z~~.I‘, in the form 

’ ‘) (:‘I,_) 

(a prime denotes differentiation with respect to Yr). From the NS equations it follows that 
the quantities u,,p,, u1 can be found from the equations 

After substituting the expansions (3.2) into it, system (3.3) yields 

N, (g,) == 0, u = 1, 2, 3, N, (G,) = (g;/(f q,)) - i o,g,)dH,ldX 

(N, (G) s G” - n”o,*G) 
(3.4) 

Since o,<O (this will be shown below) we must choose, in accordance with the conditions 
of decay as Yr-+ 00, g, = exp(o,Y,). Then from the last equation of (3.4) we have the following 
solution: 

G, = esp (owl) (HI, - iy,dH,/dX) 

where H,, = HII (X) is an arbitrary complex function determined from the conditions of matching 
the solutions in three regions. Let us write VI, Ur in the form 

3 3 

2v,= 2 ul,,E” + C.C. 2u,= x ul,,ErL~t C.C. 
n=o n=o 

Substitution of the solution (3.4) into the expansions (3.2) makes it possible to determine 

U1nr %n and establish. a relation between them, which also holds for the layer 2 = 0 (1) 

Uln (yl = 0) + iuI, (yl = 0) = 0 (n is a natural number) (3.5) 

We seek the solution in the layer 2 = 0 (1) in the given region in the form (3.1), (3.2), 
with 6 replaced by E'J*> X and 2. 

4. Basic part of the boundary layer. As was showed earlier, in the basic part of 
the boundary layerthevariable Y,sY,/e = O(1). We seek the expansion in this region in the 
form 

u* - u*u (Yz) _ ~ + * L’I; P* - P.O 
U&l5 -- 2 * U,Ea6 = vz + At --~pz+A 

U*aP*E6 (4.1) 

where u(y2) is an arbitrary Blasius velocity profile at z = 0. The functions u~,~~,u~ depend 

on zlr t,, X, Y,. Substituting (4.1) into the NS equations, we obtain the following system for 
the principal terms in E: 

which can be solved explicitly 

(4.2) 

The arbitrary function p1 and A can be found as a result of matching. 
The conditions of matching the transverse velocity and pressure during the passage from 

the region of boundary layer to the potential flow, are 

"1 (y, = 0) = -&l/ax,, p1 (Y, = 0) = Pz (4.3) 

The conditions of matching the longitudinal velocity and pressure during the passage 
from the region of viscous sublayer to the main bulk of the boundary layer, are 

u,(y=oo)=h,A,p,-Pz (4.4) 
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Now, using the relations (4.3), (4.4), (3.3), (3.5), (2.2) and condition 

apsiax, = aauslaya (Y = 0) 

we can obtain 

rl (fJ = 0, rl (Q)J = -2o,f,’ (00) dC,/dX, fo’ (w) = 0 (4.5) 
rz (f*) = 0, r, (a)) Es h,W’ (0) + iw,2nW’(oo) 

We seek the solution in the layer Z = 0 (1) in the form (4.1) where 6 hasbeenreplaced 

by El'., x, by 2, u (Yz) by C (Yz) (1 - 'lGY& In C/dYJ (the last substitution represents the 
expansion of the Blasius profile in x in the neighbourhood of L,.Using a procedure analogous 
to the derivation of (4.5), we can obtain the boundary condition for @r in the layer Z = O(1) 

ri (Q = -2o,f,' (00) dC,ldZ - Vpi~;fl (00) ZC, (4.6) 

The boundary conditions and equations for fi, fo, f, remain unchanged. 

5. Equation for the amplitude. Let us now change, in systems (2.31, (2.7) sup- 
plementedbythe boundary conditions (4.5), (4.61, to new variables 

The new systems can be obtained from the old ones by replacing o,, by wooto by olO, & 
byunity, and the factor Z by hl"J*Z‘, and we shall retain the old numbering. In what follows, 
we shall omit the primes from the new variables. 

We can write systems (2.3), (2.4), and (2.5) in the form &:&-+($,,cp), where the 
operator L,, is given by the relation 

L,(Q) =*, r,(m) = T, r,(D) = 0 

The kernel of the operator Lo,, is identically zero when n#l, i.e. an inverse operator 

-&,-l exists and the kernel represents, for R = 1, the integrals of the Airy function Ai( 
A solution will exist when n = 1 if and only if the following relation holds (Bi(Q) is a 
standard special function): 

P (I#) G F Ai (Q,) Y (E,)d& - Ai (9,) i Bi (L&)x 
0 

(5.1) 

k,, = I oo,, j'h exp (--in/6), k,, = k,,w,,lo 00, Qn = k&t + k,, 

System (2.3) has a solution under the condition that ooO = -1.0005,o,, = 2.298 /6/. Here 

fl’ (Y) = K Ai (Jw -I- 4,) and we choose the constant K, to be specific, equal to I/n (this 
will affect only the initial conditions for Cl when, X = 0). Then the expansions (2.1), (2.2) 
will represent, to the first order, the neutral TS wave. 

The condition for (2.4) to be solvable (with the corresponding condition from (4.5) for 
the layer X = O(1)) yields 

(2o&’ (m) + P (yfl”)) dCJdX + io,,P (<faTI + fl”fo + $ fz’“fl)) c, 1 CI ia = 0 

or 

dC,/dX = K,C1 1 C, 1 a 
a = Re K1 = -0.4099, r1 E Im K1 = 0.4533 

(5.2) 

Let f=lC,l. Then f (X) = (ftojba - 2aX)-"*, where f (0) = 0 (1) is the parameter of the 
problem. Since a<O, we find that the amplitude of the TS wave decays when X>O as 
(-2aX)-'I* on the scale X =0(l). Then from (5.2) it follows that 

C, - (-2aX)-'1s exp (ir,/(-2a) In X + icp,) when X-+00 (5.3) 

where 'p,, is an arbitrary real constant determined by the initial conditions when X = 0. 
The condition for system (2.5) to be solvable for the layer Z=O(l), taking (4.61 into 

account, yields 

dC,ldZ = K,C, ( C, I a + DZC, (5.4) 
d, = Re D = 0.1441, s = Im D = 0.2309 

in analogous equation was obtained in /7/. We find that (5.4) can also be solved ex- 
plicitly. Let us write f = 1 C, III = arg Cl. Then (5.4) will be equivalent to the system 
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df ‘dZ = of3 + d,Zf, d’4ldZ = r# + sZ (5.5) 

The substitution f2 = @-’ reduces the first equation of this system to a linear equation 
whose solution is 

where K,is an arbitrary positive constant. The function Y can then be defined as follows: 

y z-: y o + + Z2 + ~1 if’ (E) dE (5.6) 
” 

where Y,is a real constant. Analysis of the asymptotic expressions of the solution of (5.5) 
yields 

f (2 --+ 0) ---t (K, - 2aZ)-‘12 + o (1) (5.7) 
f (Z _. %I) ----i (- $)‘” Z’/z + 0 (Z’h) 

If we continuethesolution (2.2), constructed inthelayer X = o(f) in terms of its 
asymptotic forms as X -, m, to scales of the order of Z = O(1) (this formally reduces to 
substituting X =Z6'id/* into (5.31, and then into (2.2)). Then, when K, = 0 and for the 
corresponding value of Yo we obtain the asymptotic expression at the zero (Z-0) for the 
solution in the layer Z = O(1). In the limit, when PN s'h, the scales of X and Z will be 
the same and the non-linearly non-parallel development of the perturbations will occur from 
the very beginning, and this was studied in /7/. 

6. Basic results. Analysis of the asymptotic expressions (5.7) shows that a point 
Z, exists at which the amplitude f in the layer Z = O(i) reaches its minimum m. Numerical 
calculations on a computer gave ZQ = 1.072, m = 1.3%. According to the linear theory the 
following condition holds /lo, ll/ for the lower branch of NSC as E-+0: 

F = w*v*:U,~ -1 hl'&n,eG + A,? + 0 (F~) (6.1) 

where A1 is a number. 
The distance along the plate from its beginning to the point of which a fixed frequency 

o.+ perturbations has a smallest amplitude at the bottom of the boundary layer, is equal to 
L,” = L, (1 + z&‘/q. The number s0 = (U,L,“/v,)-‘I* found from this distance is connected with 
E by the relation E = E,, (1 + Z,E,%/~) -I- 0 (et/*). Substituting this relation into (6.1) we 
obtain, as .sO -0 

P -S ?L~~~~,,E,,~ (1 + 3Z,e,V4) + A1~07 + 0 (sOR) (6.2) 

Since the Reynolds number in the experiment is determined from L,” /2/, comparison with 
thetheorymust be made using the formula (6.2). 

The proposed theory holds when 1 >s>&"'a, or, using the dimensional coordinates, when 

1 > A,ieU, > e”fd (6.3) 

whereA,is the perturbation amplitude (separated TS wave) for the longitudinal velocity at 
the bottom of the boundary layer at the point L,. The wave satisfying condition (6.3) has a 
minimum amplitude within the NSC loop. 

Condition (6.3) facilitates the study of the problems of "susceptibility" /2/ for 
various types of perturbations leading to the satisfaction of these conditions, since the 
subsequent stage of development of these perturbations in the layer Z = O(1) in the same 
with an accuracy of up to the phase Y,, from (5.6), determined by the value C, (X =O). 

The proposed theory is based on the assumption that during the approach to the point L, 
the perturbation takes the form of the TS wave with a zero growth increment. The wave can 
be generated by, e.g., a vibrator at the point L, oscillating with critical frequency, with 
dimensions given in /9/. 

1. 

2. 

3. 
4. 
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ON FORCED OSCILLATIONS IN THE BOUNDARY LAYER AT 
FREQUENCIES NEAR THE UPPER BRANCH OF THE NEUTRAL CURVE* 

V.E. ZHUK 

Perturbations introduced into the boundary layer (BL) of an incompressible 
liquid by a harmonic oscillator in the form of a moving section of the 
surface are examined. Outside the oscillating part, the streamlined 
solid is a plane plate. It is assumed that the Reynolds number is large 
and the oscillation frequency, corresponds, in order of magnitude, to the 
asymptotic form of the upper branch of the neutral stability curve (NSC). 
The system of equations for perturbations, at small amplitudes of the 
oscillator, is linearized and is solved by the Fourier method. In addition, 
for each Fourier component, the flow field is divided into five sublayers. 
The amplitude of a Tollmin-Schlichting wave (TS) is calculated and 
separated from the perturbed background downstream of the oscillator. If 
the oscillator frequency exceeds the neutral value at the upper branch of 
NSC with the given Reynolds number, the TS wave amplitude decays. For 
frequencies below neutral , the wave amplitude increases exponentially 
downstream. In the final example, the parameters of the TS wave fall 
within the unstable region, between two NSC branches. 

At a distance L* from the front edge of the plane surface with an incompressible viscous 
liquid flowing over it, let there be a moving section of surface of length l*whichisoscillat- 
ing at a frequency w* (henceforth the asterisk denotes dimensional quantities). Defining 
the Reynolds number as R = U,*L*Iv*, where U,* is the velocity of the oncoming flow and v* 
is the kinematic viscosity, we will assume R-m. AII investigation of the perturbation 
propagation process caused by the moving section is one of the problems of BL reproducibility. 

The solution of this problem taking compressibility into account and for any Mach number 
at infinity was obtained previously in /l, 2/ for 1* = 0 (R-"IL*), 69 = 0 (R'~*CJ',*L*~), starting from 
the linearized equations of the theory of free interaction /3, 41, which, as is well-known 
/5, 6/, is subject to perturbations in the given range of frequencies. In the subsonic case, 
the first mode from the spectrum of eigensolutions of these equations corresponds to the 
*Prikl.~ate~.~e~~.,51,3,417-424,1987 


